Linear Transformations and Matrices

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping or transformation from an n^{th} dimensional to an m^{th} dimensional vector space. The **transformation** T is called **linear** if the following two conditions are true for any constant c and all "vectors" u and v in \mathbb{R}^n .

(i)
$$T(u+v) = T(u) + T(v)$$

(ii)
$$T(c \cdot u) = c \cdot T(u)$$

Example 1

Show that the following transformation is linear.

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-3y \end{bmatrix}$$

Let $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ be vectors in \mathbb{R}^2 and c be a constant.

(i)
$$\vec{u} + \vec{v} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix}$$

$$T(\vec{u} + \vec{v}) = T \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + u_2 + v_2 \\ u_1 + v_1 - 3(u_2 + v_2) \end{pmatrix} = \begin{pmatrix} u_1 + v_1 + u_2 + v_2 \\ u_1 + v_1 - 3u_2 - 3 v_2 \end{pmatrix}$$
$$= \begin{pmatrix} u_1 + u_2 \\ u_1 - 3u_2 \end{pmatrix} + \begin{pmatrix} v_1 + v_2 \\ v_1 - 3v_2 \end{pmatrix} = T(\vec{u}) + T(\vec{v})$$

(ii)
$$c\vec{u} = c \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix}$$
$$T(c\vec{u}) = T \begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix} = \begin{pmatrix} cu_1 + cu_2 \\ cu_1 - 3cu_2 \end{pmatrix} = c \begin{pmatrix} u_1 + u_2 \\ u_1 - 3u_2 \end{pmatrix} = cT(\vec{u})$$

Example 2

Show that the following transformation is **not** linear.

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+1 \\ 2y \end{bmatrix}$$

$$T(c\vec{u}) = T \begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix} = \begin{pmatrix} cu_1 + 1 \\ 2cu_2 \end{pmatrix} \neq cT(\vec{u}) \quad \left[cT(\vec{u}) = c \begin{pmatrix} u_1 + 1 \\ 2u_2 \end{pmatrix} \right]$$

Matrix Representation of Linear Transformations

To find the **standard matrix representation** of any linear transformation T, apply T on the identity vectors. In other words,

$$T = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} & T \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} & \cdots & T \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

In example 1 from the previous page,

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-3y \end{bmatrix}$$

$$T = \begin{bmatrix} T \begin{pmatrix} 1 \\ 0 \end{pmatrix} & T \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -3 \end{bmatrix}$$

Later, we will call $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ the standard basis in \mathbb{R}^2 .

Homework

1. Consider the linear transformation given by

$$T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_2 - x_3 \\ x_3 - x_4 - x_1 \end{pmatrix}$$

a. Find the matrix representation of T.

b. Compute $T \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ using the formula of T.

c. Compute $T \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ using the matrix representation of T.

2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that its matrix representation is

$$T = \begin{bmatrix} -2 & 1 & -2 \\ 1 & 1 & 0 \\ 3 & -1 & 6 \end{bmatrix}.$$

Find a formula for $T\begin{bmatrix} x \\ y \\ z \end{bmatrix}$.

Transformation	Image of the Unit Square	Standard Matrix
Reflection through the x ₁ -axis	$\begin{bmatrix} x_2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection through the x ₂ -axis	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection through the line $x_2 = x_1$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad x_2 = x_1$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad x_1$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Reflection through the line $x_2 = -x_1$	$x_2 = -x_1$	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
Reflection through the origin	$\begin{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ -1 \end{bmatrix} \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

TABLE 2 Contractions and Expansions

TABLE 3 Shears

Rotations

Counterclockwise

Equation of a unit circle centered at (0, 0): $x^2 + y^2 = 1$

Using the fact that the equation of the unit circle centered at (0,0) can be written in the form $\cos^2\theta + \sin^2\theta = 1$, the matrix representation (R_{cc}) of a counterclockwise rotation by θ in \mathbb{R}^2 can be easily derived to be

$$R_{cc} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{cc} = \begin{bmatrix} R_{cc} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & R_{cc} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \cos \theta & \cos \left(\frac{\pi}{2} + \theta \right) \\ \sin \theta & \sin \left(\frac{\pi}{2} + \theta \right) \end{bmatrix} = \begin{bmatrix} \cos \theta & \cos \frac{\pi}{2} \cdot \cos \theta - \sin \frac{\pi}{2} \cdot \sin \theta \\ \sin \theta & \sin \frac{\pi}{2} \cdot \cos \theta + \sin \theta \cdot \cos \frac{\pi}{2} \end{bmatrix}$$

Note: It's a common practice to use the same variable for the transformation as a mapping, and the matrix representing the same transformation.

Clockwise

For clockwise rotations $\left(R_c\right)$ by heta in \mathbb{R}^2 , just replace heta by - heta in R_{cc} and we get

$$R_c = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Homework

1. Compute
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} =$$

- 2. What can you say about the columns of the matrix R_{cc} (as vectors)?
- 3. Find a formula for R_{cc}^2 .

$$R_{cc}^{2} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} =$$