Linear Transformations and Matrices

Definition
Let T:R" — R™ be a mapping or transformation from an n" dimensional to an m"

dimensional vector space. The transformation T is called linear if the following two

conditions are true for any constant ¢ and all fvectors® u and v in R".
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Show that the following transformation is linear.
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Let U = (ulj and vV = (vlj be vectors in R? and ¢ be a constant.
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Show that the following transformation is not linear.
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Matrix Representation of Linear Transformations

To find the standard matrix representation of any linear transformation T , apply T on
the identity vectors. In other words,
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Later, we will call {(OJ (J} the standard basis in R?.

Homework

1. Consider the linear transformation given by
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a. Find the matrix representation of T.

b. Compute T using the formula of T.
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c. Compute T using the matrix representation of T.
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2. Let T:R®— R?® be a linear transformation such that its matrix representation is
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TABLE 1 Reflections

Transformation Tmage of the Unit Square Standard Matrix
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix
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TABLE 3 Shears
Transformation Image of the Unit Square Standard Matrix
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Rotations

Counterclockwise

Equation of a unit circle centered at (0, 0): X* + y* =1
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Using the fact that the equation of the unit circle centered at (0,0) can be written in the
form cos® @ + sin® @ = 1, the matrix representation(RCC)of a counterclockwise rotation

by € in R?can be easily derived to be
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Note: It’s a common practice to use the same variable for the transformation as a

mapping, and the matrix representing the same transformation.



Clockwise

For clockwise rotations(RC) by 6 in R?, just replace # by - in R, and we get

¢ —sin@ cosd

| cos(=0) —sin(-0) | cosé sind
"Lin(—e) cos(—H)} ‘[

Homework

cosd -sin@ || cos@ sind B
sin@ cos@ ||-sind cos@|

1. Compute {

2. What can you say about the columns of the matrix R_. (as vectors)?

3. Find a formula forRZ .
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